Skip to main content

Potential application of chicken manure biochar towards toxic phenol and 2, 4-dinitrophenol in wastewaters


Phan Quang Thang, Kim Jitae, Bach Long Giang, N.M. Viet, Pham Thi Huong

Source title: 
Journal of Environmental Management, 251: 109556, 2019 (ISI)
Academic year of acceptance: 

In this study, chicken manure biochar (CBC) was prepared and applied as adsorbent for the removal of phenolic pollutants including phenol (Ph) and 2,4-Dinitrophenol (DNP) from wastewaters. The feasibility analysis was focused on the adsorption effects of various factors, such as initial concentration, adsorbent dosage and reaction time. The results showed that BC could efficiently remove the Ph and DNP within 90 min of reaction time. Increasing of CBC dosage up to 0.3 g results in the maximum removal efficiency of Ph and DNP and lowers initial concentration which is beneficial for the adsorption of phenolic compounds. The second-order kinetic model and the Langmuir isotherm provided the best correlation with the adsorption data. Based on the Langmuir isotherm, maximum adsorption capacities (qmax) of Ph and DNP were found at 106.2 and 148.1 mg g−1, respectively. The obtained qmax values for CB were higher than those reported in literature on the adsorption of Ph and DNP using different biochar. Analyzing the regeneration characteristics, BC displayed high reusability with less than 20% loss in adsorption capacities of Ph and DNP, even after five repeated cycles. Investigation of the adsorption equilibrium under various conditions suggested several possible interaction mechanisms, including hydrogen bonding, electrostatic interaction and π- π bonding, which were attributed to the binding affinity of the adsorbent-adsorbate interaction.

In the field application, the CBC showed an excellent removal efficiencies of Ph and DNP from industrial wastewaters (around 80% phenolic pollutants were removed). These findings support the potential use of CBC as effective adsorbent for treatment of wastewater containing Ph and DNP.