Skip to main content

Structure of some classes of repeated-root constacyclic codes of length 2Kmpn


Hai Q. Dinh, Saroj Rani

Source title: 
Discrete Mathematics, 342: 111609, 2019 (ISI)
Academic year of acceptance: 

Let a be the finite field of order q, where q is a power of an odd prime p, and p,ℓ are distinct odd primes, and a are positive integers. In this paper, the multiplicative group a is decomposed into mutually disjoint union of gcda cosets of the cyclic group generated by a, where ξ is a primitive element of a. With the help of this decomposition, all constacyclic codes of length a over a are classified into gcda disjoint classes. Accordingly, generator polynomials of constacyclic codes of length a over the finite field a and their duals are explicitly determined in the cases, when a. And also some complementary-dual, self-orthogonal, self-dual, dual-containing constacyclic codes of length a over a are determined.