Second-order slip condition considering Langmuir isothermal adsorption for rarefied gas microflows
Second-order slip condition considering Langmuir isothermal adsorption for rarefied gas microflows
Effect of the slip boundary condition on rarefied gas flow simulations plays an important role to understand the behaviour of gas microflows in MEMS. Several second-order slip conditions were proposed by the models of the kinetic theory of gases to simulate the rarefied gas microflows, in which the so-called classical second-order slip condition was derived from the Karniadakis et al. model. In this paper, a new second-order slip condition is proposed to employ with the Navier-Stokes-Fourier equations for simulating the rarefied gas flows in microchannels. It is derived by combining the Langmuir isothermal adsorption and the Karniadakis et al. model, with the aim of achieving a more realistic physical model. The pressure-driven back-forward-step, the Couette and pressure-driven Poiseulle rarefied gas flows in microchannels are investigated to validate our new second-order slip condition. Slip velocities using our new second-order slip condition are better than those using the conventional Maxwell and the so-called classical second-order slip conditions, and are in very good agreement with the DSMC data for all cases considered.