Nhảy đến nội dung

A Study of FqR-Cyclic Codes and Their Applications in Constructing Quantum Codes

Authors: 

Hai Q. Dinh, Sachin Pathak, Tushar Bag, Ashish Kumar Upadhyay, Warattaya Chinnakum

Source title: 
IEEE Access, 8: 190049-190063, 2020 (ISI)
Academic year of acceptance: 
2020-2021
Abstract: 

Let R = Fq + uFq + vFq + uvFq , with u2 = u, v2 = v, uv = vu, where q = pm for a positive integer m and an odd prime p. We study the algebraic structure of Fq R-cyclic codes of block length (r, s). These codes can be viewed as R[x]-submodules of Fq [x]/(xr - 1) × R[x]/(xs - 1). For this family of codes we discuss the generator polynomials and minimal generating sets. We study the algebraic structure of separable codes. Further, we discuss the duality of this family of codes and determine their generator polynomials. We obtain several optimal and near-optimal codes from this study. As applications, we discuss a construction of quantum error-correcting codes (QECCs) from Fq R-cyclic codes and construct some good QECCs.