Nhảy đến nội dung

Simulation of cavitation of spherically shaped hydrogen bubbles through a tube nozzle with stenosis

Authors: 

Rahmat Ellahi, Ahmad Zeeshan, Farooq Hussain, Mohammad Reza Safaei

Source title: 
International Journal of Numerical Methods for Heat and Fluid Flow, 30(5), 2020 (ISI)
Academic year of acceptance: 
2020-2021
Abstract: 

Purpose

The purpose of this study is to investigate the monodisperse cavitation of bubbly mixture flow for water and hydrogen mixture flows through a nozzle having a stenosis on the wall.

Design/methodology/approach

Two flow regions, namely, quasi-statically stable and quasi-statically unstable increase in the bubble radius, are considered. Different oscillating periods of bubbles in downstream corresponding to various values of Reynolds number are taken into account. The Range–Kutta method is used to tackle nonlinear coupled system of governing equations.

Findings

It is observed that for the larger values of Reynolds number, the void fraction at the upstream section, even at small values, yields instabilities at the downstream. Consequently, owing to sudden increase in the velocity, the bubbles strike the wall with high speed that eventually remove the existing stenosis. This process can be considered as an effective cardiac surgery for arteries with semi-blockage.

Originality/value

Original research work and to the best of author’s knowledge, this model is reported for the first time.